# Predicting the future risk of lung cancer

# Development and validation of QCancer2 (10-year risk) lung model and evaluating the performance of nine prediction models

Weiqi Liao (presenting), Carol Coupland, Judith Burchardt, David Baldwin, the DART initiative (WP6), Fergus Gleeson, Julia Hippisley-Cox

## **Research background and rationale**

- Lung cancer the most common cause of cancer death in the UK (21%)
- Screening helps early detection and reduce mortality.
- Using risk prediction models can target individuals at high risk.
- The Liverpool Lung Project (LLP<sub>v2</sub>) model (UK) and the Prostate, Lung, Colorectal and Ovarian (PLCO<sub>m2012</sub>) model (US), currently used in the Targeted Lung Health Check Programme, did not have satisfactory model performance.
- This study aims to develop and validate a model to predict the future risk of lung cancer and suitable for lung cancer screening in the English primary care population.

# Conclusions

- Compared with the currently used  $LLP_{v2}$  and  $PLCO_{M2012}$  models in the Targeted Lung Health Check Programme, the QCancer2 (10-year risk) lung model has better
  - Discrimination
  - Calibration
  - Net benefit
- The QCancer2 (10-year risk) lung model may be more suitable for selecting individuals at high risk from the English primary care population for lung cancer screening.

## Table 1 – Basic information of the nine models

| QCancer2 (10-year) lung model | LLP                                          | LCRAT                                                                  | PLCO                                                                                    | Pittsburgh                                                                                      | Bach                                                                                                                      |
|-------------------------------|----------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 2015, 2022                    | v2, v3                                       |                                                                        | 2012, 2014                                                                              |                                                                                                 |                                                                                                                           |
| England                       | England                                      | US                                                                     | US                                                                                      | US                                                                                              | US                                                                                                                        |
| 1-10 years                    | 5 years                                      | 5 years                                                                | 6 years                                                                                 | 6 years                                                                                         | 10 years                                                                                                                  |
| 25-84                         | 40-84                                        | 55-74                                                                  | 55-74                                                                                   | 50-79                                                                                           | 45-69                                                                                                                     |
| Yes                           | Yes                                          | No                                                                     | Only the 2014 model                                                                     | No                                                                                              | No                                                                                                                        |
|                               | 2015, 2022<br>England<br>1-10 years<br>25-84 | 2015, 2022 v2, v3   England England   1-10 years 5 years   25-84 40-84 | 2015, 2022 v2, v3   England England US   1-10 years 5 years 5 years   25-84 40-84 55-74 | 2015, 2022v2, v32012, 2014EnglandEnglandUSUS1-10 years5 years5 years6 years25-8440-8455-7455-74 | 2015, 2022 v2, v3 2012, 2014   England England US US   1-10 years 5 years 5 years 6 years   25-84 40-84 55-74 55-74 50-79 |

PLCOm2012 (6-year. Women)

---- Reference

ΚK

UK

DART

Groups

0

Figure 1 – Examples of calibration plots (validation, 910,870 women ever-smoker aged 55-74 years old)

---- Reference

Groups

QCancer2 lung model (5-year. Women)

5-year predictive horizon – LLP<sub>v2</sub> VS QCancer2 10,720 lung cancer cases

Referenc

Groups

LLPv2 (5-year. Women)

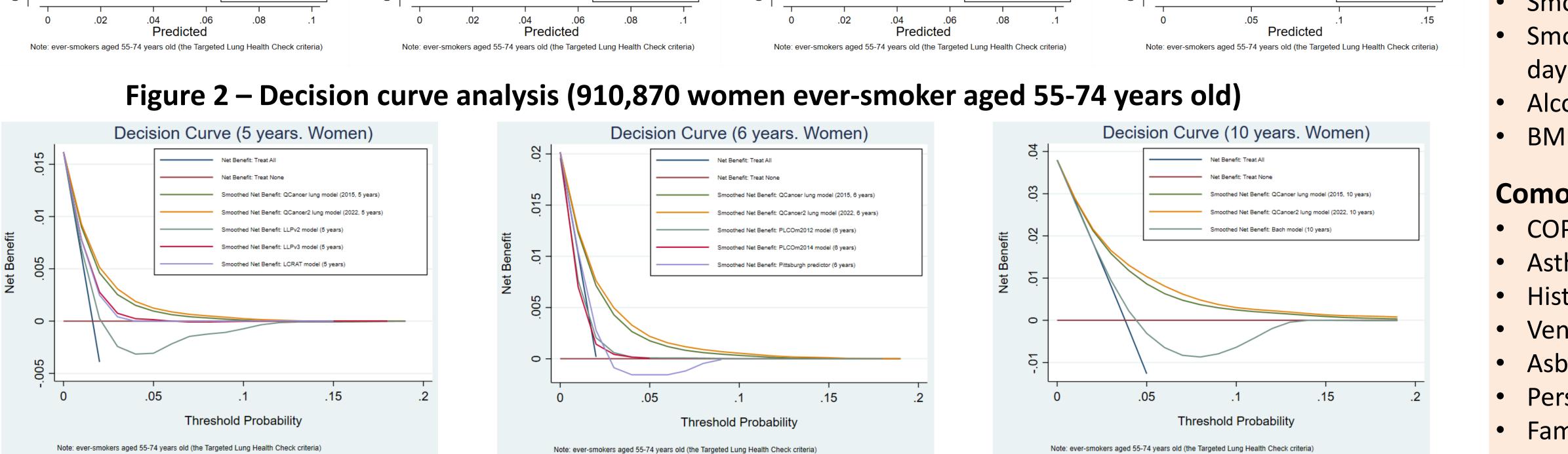
Φ**Φ** Φ Φ<sup>Φ Φ</sup>

6-year predictive horizon – PLCO<sub>M2012</sub> VS QCancer2 12,595 lung cancer cases

QCancer2 lung model (6-year. Women)

---- Reference

Groups


Box 1 **Predictors for the QCancer 2 (10**year risk) lung model



- Age
- Sex
- Ethnicity
- Socioeconomic status (Townsend score)

### Lifestyle factors:

- Smoking status



8 000

Smoking intensity (cigarette per day)

- Alcohol
- BMI

### **Comorbidities**:

- COPD
- Asthma
- History of pneumonia
- Venous thromboembolism
- Asbestos exposure
- Personal history of cancer
- Family history of lung cancer

**Note:** similar results between men and women. This poster only presents the results of women due to limited space.

### Methods

Q 4

#### Stage 1 – Develop and validate the QCancer2 (10-year risk) lung model

- \* *Model development*: Cox regression was used in the derivation dataset (12.99 million) to develop the QCancer2 (10-year risk) lung model in men and women separately, using data from the QResearch<sup>®</sup> database.
  - Multiple imputation was used to replace missing values (5 imputations).
  - Fractional polynomials [2] were used to model non-linear relationships between age/BMI/Townsend scores and the outcome (incident diagnosis of lung cancer).
- \* Model validation: three discrimination measures (Harrell's C [3], D statistic [4],  $R_D^2$  [5]) and calibration plots were used to evaluate the model performance in the validation cohort (4.14 million).

Table 2 – Discrimination statistics of prediction models in women in the full model and ever-smokers aged 55-74 years old

|                            | Harrell's C  | D statistic | R <sub>D</sub> <sup>2</sup> |
|----------------------------|--------------|-------------|-----------------------------|
| QCancer2 full model        |              |             |                             |
| 25-84 years old            | 0.90         | 2.81        | 65.4%                       |
| Predictive horizon: 5 year | Ever-smokers | 55-74 years |                             |
| QCancer2                   | 0.73         | 1.93        | 46.9%                       |
| LLP <sub>v2</sub>          | 0.65         | 1.56        | 36.7%                       |

#### **Stage 2 – Model evaluation**

The QCancer2 (10-year risk) lung model was compared with the other seven models (LLP<sub>v2</sub>, LLP<sub>v3</sub>, LCRAT,

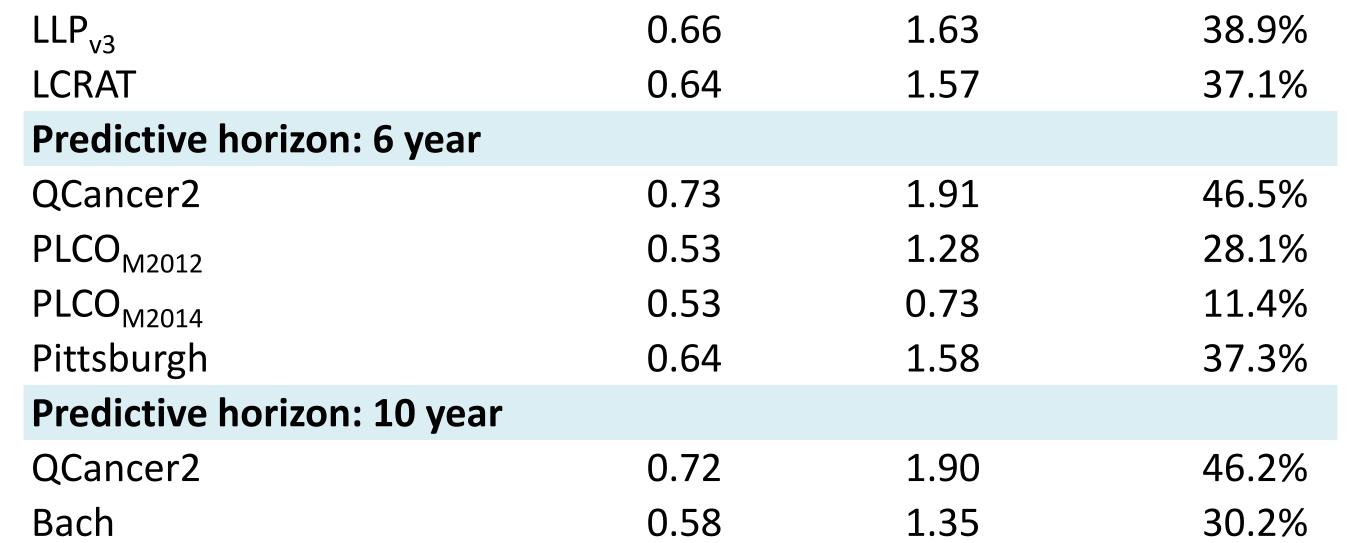
PLCO<sub>M2012</sub>, PLCO<sub>M2014</sub>, Pittsburgh, and Bach models) to predict incident lung cancer diagnosis in two approaches:

1) In current and ex-smokers aged 55-74 years (the population of the Targeted Lung Health Check Programme),

2) The QCancer2 lung model compared with each model using its eligibility criteria for the study sample/population.

Model performance was evaluated by discrimination and calibration plots. Decision curve analysis [6] was used to evaluate the net benefit.

#### **References:**


1. O'Dowd et al. Thorax. 2022;77(9):882-890; 2. Royston et al. Int J Epidemiol 1999;28(5):964-74.

3. Newson. Stata Journal 2010;10(3):339-58; 4. Royston el al. Stat Med 2004;23:723-48;

6. Vickers et al. Med Decis Making 2006;26(6):565-74.

5. Royston. Stata J 2006;6:1-14; NUFFIELD DEPARTMENT OF **PRIMARY CARE** HEALTH SCIENCES





**National Institute for** Innovate **Health and Care Research** 



Email: Weiqi.Liao@phc.ox.ac.uk